Abstract

A simple and fast method of measuring self-diffusion coefficients of protonated systems with a mobile single-sided NMR sensor is discussed. The NMR sensor uses a magnet geometry that generates a highly flat sensitive volume where a strong and highly uniform static magnetic field gradient is defined. Self-diffusion coefficients were measured by Hahn- and stimulated echoes detected in the presence of the uniform magnetic field gradient of the static field. To improve the sensitivity of these experiments, a Carr–Purcell–Meiboom–Gill pulse sequence was applied after the main diffusion-encoding period. By adding the echo train the experimental time was strongly shortened, allowing the measurement of complete diffusion curves in less than 1 min. This method has been tested by measuring the self-diffusion coefficients D of various organic solvents and poly(dimethylsiloxane) samples with different molar masses. Diffusion coefficients were also measured for n-hexane absorbed at saturation in natural rubber with different cross-link densities. The results show a dependence on the concentration that is in good agreement with the theoretical prediction. Moreover, the stimulated-echo sequence was successfully used to measure the diffusion coefficient as a function of the evolution time in systems with restricted diffusion. This type of experiment proves the pore geometry and gives access to the surface-to-volume ratio. It was applied to measure the diffusion of water in sandstones and sheep Achilles tendon. Thanks to the strong static gradient G 0, all diffusion coefficients could be measured without having to account for relaxation during the pulse sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call