Abstract

We study the diffusion of tracers (self-diffusion) in a homogeneously cooling gas of dissipative particles, using the Green-Kubo relation and the Chapman-Enskog approach. The dissipative particle collisions are described by the coefficient of restitution epsilon which for realistic material properties depends on the impact velocity. First, we consider self-diffusion using a constant coefficient of restitution, epsilon=const, as frequently used to simplify the analysis. Second, self-diffusion is studied for a simplified (stepwise) dependence of epsilon on the impact velocity. Finally, diffusion is considered for gases of realistic viscoelastic particles. We find that for epsilon=const both methods lead to the same result for the self-diffusion coefficient. For the case of impact-velocity dependent coefficients of restitution, the Green-Kubo method is, however, either restrictive or too complicated for practical application, therefore we compute the diffusion coefficient using the Chapman-Enskog method. We conclude that in application to granular gases, the Chapman-Enskog approach is preferable for deriving kinetic coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.