Abstract

We use dynamic light scattering (DLS) and fluorescence recovery after pattern photobleaching (FRAPP) to investigate the dynamics of a model transient network made of an oil-in-water droplet microemulsion to which small amounts of a telechelic polymer are added. The DLS correlation functions exhibit three relaxation modes. The two first modes can be interpreted quantitatively in the frame of the classical De Gennes-Brochard theory of DLS in viscoelastic system. The third, slower mode is diffusive and arises from the ternary character (droplets, polymers, and water) of the system. By contrast, the pattern relaxation in FRAPP exhibits a single-, slow-exponential decay with a characteristic time proportional to the squared inverse scattering vector: the corresponding self-diffusion coefficient of the droplets is found to be close to the diffusion coefficient characterizing the third mode in DLS. We interpret these results in terms of the coupled relaxation of the concentration fluctuations of the polymers and the droplets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.