Abstract

This study tested the hypothesis that there would be differences in primary stability due to the presence of self cutting blades. We investigated the effect of a self-cutting blade implant design on the primary stability of tapered dental implants in a simulated low-density bone model. Implant fixtures with 2 different designs, one with self-cutting blades and the other without self-cutting blades, were fabricated in the same implant system. Insertion torque, resonance frequency analysis, reverse torque, and pull-out and push-in tests were evaluated in grade no. 10 solid rigid polyurethane foam. All 5 assessments of the group without self-cutting blades were significantly higher than those of the self-cutting group (P < .001). The implants without self-cutting blades create a lateral compression with increased contact surface area and consequently improve the primary stability in a simulated low-density bone model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call