Abstract
Satellites produce global monitoring data, while field measurements are made at a local station over the land. Due to difference in scale, it has been a challenge how to define and correct the satellite retrieval biases. Although the relative approach of cumulative distribution functions (CDF) matching compares a long-term climatology of reference data with that of satellite data, it does not mitigate the retrieval biases generated from Instantaneous Field of View (IFOV) measurements over short timescales. As an alternative, we suggest stochastic retrievals (using probabilistic distribution function) to reduce the dry bias in soil moisture retrievals from the satellite SMOS (Soil Moisture and Ocean Salinity) that occurs at the time scale of several days. Rank Probability Skill Score (RPSS) is also proposed as non-local Root Mean Square Errors (RMSEs) of a probabilistic version to optimize stochastic retrievals. With this approach, the time-averaged RMSEs of retrieved SMOS soil moisture is reduced from 0.072 to 0.035 m3/m3. Dry bias also decreases from −0.055 to −0.020 m3/m3. As the proposed approach does not rely on local field measurements, it has a potential as a global operational scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.