Abstract

In the present report we discuss new physical principles for creating super-high-energy pulsed HF lasers and amplifiers based on a photon-branched chain reaction (PBCR). In the proposed mechanism, no external energy is consumed. We also formulate the demands for constructing lasers of this type. It is shown that a multi-pass optical scheme of a pulsed chemical HF laser allows for the initiation of an auto-wave PBCR by external radiation. Self-supporting cylindrical zones of photon branching sequentially initiated by multiple reflections by the mirrors of an unstable telescopic cavity. Such cylindrical zones of photon branching can be considered as amplifying cascades enclosed by each other. The energy emitted by each subsequent amplifying cascade considerably exceeds the energy of the previous cascade, and the number of such cascades is determined by the cavity parameters: the diameters of the mirrors, the radius of curvature of the mirrors and the diameter of the input hole for the master oscillator. Thus, this multi-pass optical scheme allows for an effective scaling of the laser output energy up to extreme high values, even for a rather small working volume of the laser. We have conducted a parametrical study of the main laser units and we offer a specific design for a self-contained pulsed HF laser with multi-mega-joule output energy in a pulse. Also, a brief historical review of chemical lasers and the idea of a PBCR is presented in this report.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call