Abstract

We introduce a self-consistent tight-binding approach to the modeling and prediction of magnetic structure in solids. The method is similar to a charge self-consistent tight-binding method which we introduced earlier, but here we add information concerning the dependence of the ion energy on the total ion spin in the on-site matrix elements of the tight-binding Hamiltonian. We self-consistently determine both spins and charges of the ions during calculation. We illustrate with studies of ${\mathrm{MnF}}_{2}$ and the rutile form of ${\mathrm{MnO}}_{2}.$ In the first case we find without adjustment that the well-known two sublattice spin structure is predicted. In the second case we find that a disordered spin phase is predicted, contrary to experimental evidence, but a small adjustment of the parametrization yields the spiral spin structure suggested by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.