Abstract

Numerical simulations of the high-pressure plasma discharge in a switch of a microwave pulse compressor resulting in extraction of the compressor output pulse were carried out. The compressor comprised a rectangular waveguide-based cavity and an H-plane waveguide tee with a shorted side arm filled with helium. For simulations, the 3-D version of the PIC code MAGIC1 was used; the plasma was represented by the gas conductivity model provided by MAGIC. Simulations started from the preset RF fields (corresponding to the standing wave pattern in the cavity and H-tee), seeding electrons in a volume around the E-field antinode in the tee side arm (in the center of the waveguide cross-section), and āˆ¼104 cm3 plasma density (cosmic background). The plasma density is then determined self-consistently by electron ionization cross-sections and avalanche rate, which depend on the E-field that decreases with the rise of the density. It was found that the plasma extends along the E-field forming a filament whose transverse size is set by dimensions of the volume initially populated by seeding electrons. There are three stages of the plasma density evolution: first, it grows exponentially up to the value at which the E-field within the plasma region begins to decrease because of the skin-effect; then, the avalanche rate decreases but the density still rises until the RF energy begins to rapidly release from the cavity; finally, when the E-field becomes insufficient to support the avalanche, the density is saturated. The simulated peak power and waveform of output pulses showed good agreement with those obtained experimentally in the S-band compressor with laser triggering of the plasma discharge at different levels of input microwave power. The behavior of the plasma density also agrees satisfactorily with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.