Abstract

In calculations of ultrafast laser-induced ionization the treatment of fundamental mechanisms such as photoionization and the Kerr effect are treated in isolation using monochromatic perturbative approaches. Such approaches are often questionable for pulses of ultrashort duration and multi-chromatic spectra. In this work we address this issue by solving the quantum optical Bloch equations in a 3D quasi-momentum space and show how to couple this model to ultrashort pulse propagation in dielectrics. This approach self-consistently couples a quantum calculation of the photoionization yield, the photoionization current, and the current from free-carriers with the traditional Kerr effect (self-focusing and self phase modulation) without resort to a perturbative treatment. The material band structure is taken in the tight binding limit and is periodic in the crystal momentum space. As this model makes no assumption about the pulse spectrum, we examine the laser-material interaction of strongly chirped pulses and multi-color multi-pulse schemes of laser-induced material modification. These results are compared to those predicted by standard treatments, such as the Keldysh model of photoionization, for pulses of ultrashort duration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.