Abstract

AbstractMeasurements of time‐variable gravity from the Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow‐on (GRACE‐FO) missions are an invaluable tool for monitoring changes in the mass of the Earth's glaciated regions. We improve upon estimates of glacier and ice sheet mass balance from time‐variable gravity by including instantaneous spatiotemporal variations in sea level. Here, a least squares mascon technique is combined with solutions to the sea level equation to iteratively correct the GRACE/GRACE‐FO data for the induced sea level response on a monthly basis. We find that variations in regional sea level affect ice sheet mass balance estimates in Greenland by approximately 4% and in Antarctic by approximately 5%. Since 2002, the Greenland ice sheet has been losing mass at an average rate of 263 ± 23 Gt/yr, and the Antarctic ice sheet has been losing mass at average rates between 90 ± 52 and 122 ± 53 Gt/yr depending on the rate of glacial isostatic adjustment. The mass losses from both ice sheets represent an increase of 15.6 ± 2.0 mm to global mean sea levels since 2002.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.