Abstract

Within a selfconsistent description for the one- and two-body density matrices collective variables are introduced via scaling diabatic states. Equations of collective motion coupled to a collision integral for the single-particle occupation probabilities are derived from the randomness of the two-body interaction matrix elements and from an additional time smoothing procedure. For a linear approximation to the time-dependence of the single-particle energies the collision term conserves energy all by itself, i.e. the time-smoothed time derivative of the correlation energy vanishes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.