Abstract

This paper analyses a self-consistent current motion of charged particles in high-current plasma channel. Application of the results obtained to real current channels is possible provided that pair collisions do not considerably affect the current motion of plasma charged particles and the depth of the current layer is small as compared to the channel radius. The approximation adopted in this paper can be considered to be true, for instance, in the case of hydrogen channels with millimeter radius and electron energy of the order of 10 keV provided that the plasma concentration in them is in the range of 10/sup 17/ cm/sup -3/<n/sub e/<10/sup 20/ cm/sup -3/. In the present paper, advantage is taken of a kinetic plasma model with electrons and ions in the form of particle beams whose motion is governed by the resulting self-consistent electromagnetic field. It is shown that in a plasma with sufficiently high particle concentration, when the collisionless skin depth is small as compared to the channel radius, the ion motion results in the negative electron contribution to the total channel current. Moreover, the ion component of the current exceeds the total current. This is accompanied by high-speed plasma motion in the form of the electroneutral axial flux, whose direction coincides with that of the total channel current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.