Abstract

This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.