Abstract

Dead-time and switch voltage drops represent the most important sources of distortion of the (average) output voltage in pulsewidth modulation inverters. Their effect is a function of the parameters of the drive system and of the operating conditions and is often intolerable in many drives applications, thus requiring a proper compensation strategy. Many techniques are implemented in industrial drives and reported in the literature, even very recently. Differently from standard approaches, the proposed methodology is based on a detailed physical model of the power converter (including output capacitance), described by a small set of parameters. A novel self-commissioning identification procedure is introduced, adopting multiple linear regression. The technique is tested on a commercial drive in comparison with state-of-the-art techniques. In addition, back electromotive force estimation improvements in a permanent-magnet synchronous motor sensorless drive system are shown to provide additional validation of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.