Abstract

In this work, near-infrared fluorescent silver nanoclusters (Ag NCs) were prepared based on the in situ formed poly methacrylic acid (PMAA) as the template and stabilizer, which is synthesized by methacrylic acid (MAA) and hydroxyl radical (·OH) that is generated by the cascade nanoenzyme reaction of cupric oxide nanoparticles (CuO NPs). CuO NPs possess the intrinsic glutathione-like (GPx-like) and peroxidase-like (POD-like) activities, which can catalyze glutathione (GSH) and O2 to produce hydrogen peroxide (H2O2), and then transform into ·OH. The fluorescence intensity of Ag NCs decreases with the addition of GSH, because the -SH can easily anchor on the surface, resulting in the PMAA leaving the Ag NCs, and the coeffect of GSH and PMAA results in the aggregation to form larger Ag NPs. A good linear relationship between the fluorescence quenching rate and the GSH concentration was found in the range 0.01-40 μM with the detection limit 8.0 nM. The Ag NCs can be applied in the detection of GSH in the serum, as well as bioimaging of endogenous and exogenous GSH in cells with high sensitivity. Moreover, the normal and cancer cells can be distinguished through bioimaging because of the different GSH levels. The new method for the preparation of biocompatible nanoprobe based on the nanozyme tandem catalysis and the in situ formed template can avoid the direct usage of polymers or protein templates that hinder preparation and separation, providing a reliable approach for the synthesis, biosensing, and bioimaging of nanoclusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.