Abstract

Noncontact voltage measurement has the advantages of simple handling, high construction safety, and not being affected by line insulation. However, in practical measurement of noncontact voltage, sensor gain is affected by wire diameter, wire insulation material, and relative position deviation. At the same time, it is also subject to interference from interphase or peripheral coupling electric fields. This paper proposes a noncontact voltage measurement self-calibration method based on dynamic capacitance, which realizes self-calibration of sensor gain through unknown line voltage to be measured. Firstly, the basic principle of the self-calibration method for noncontact voltage measurement based on dynamic capacitance is introduced. Subsequently, the sensor model and parameters were optimized through error analysis and simulation research. Based on this, a sensor prototype and remote dynamic capacitance control unit that can shield against interference are developed. Finally, the accuracy test, anti-interference ability test, and line adaptability test of the sensor prototype were conducted. The accuracy test showed that the maximum relative error of voltage amplitude was 0.89%, and the phase relative error was 1.57%. The anti-interference ability test showed that the error offset was 0.25% when there were interference sources. The line adaptability test shows that the maximum relative error in testing different types of lines is 1.01%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.