Abstract

ABSTRACTFibre optic gyros (FOGs) are widely used in the rotation inertial navigation system (RINS). However, FOGs are sensitive to surrounding environments, and thus the drifts of FOGs would vary during the rotation of the gyros. This phenomenon may bring about residual gyro drifts, which are the primary cause for the accumulated navigation errors in the RINS. A recursion least square estimation method based on position errors is proposed to obtain residual drifts. A multi-position calibration method is presented to separate the residual drifts along the body axis. Static experiment results show that the positioning accuracy of a 12-h navigation is improved significantly from 2.24 to 0.54 n mile by compensating the residual drifts along the body axis. A vehicle-mounted motional experiment is conducted to verify the proposed calibration method, and the positioning accuracy is improved from 1.38 to 0.66 n mile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.