Abstract

An acceleration sensor having a sensing mass supported relative to a frame by a plurality of beams having a plurality of resistors integral therewith. The resistance of the beam resistors varies as the sensing mass is displaced relative to the frame in response to acceleration of the frame in a direction generally normal to the plane of beam extension. The displacement of the sensing mass due to such acceleration produces a corresponding change in the output of a Wheatstone bridge incorporating the beam resistors in the legs thereof. At least one leg of the bridge additionally has a resistor of variable resistance in series with the beam resistor thereof, the resistance of which is controlled by a microprocessor, whereby the bridge output is adjusted to compensate for temperature effects and manufacturing tolerances. The output of the electrical control circuit for the sensor is periodically calibrated by electrostatically deflecting the sensing mass relative to the frame, whereby the sensing mass is subjected to the equivalent of a known accelerating field, and using the resultant change in bridge output as a reference value for calibrating the instantaneous changes in bridge output resulting from the acceleration of the sensor frame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.