Abstract

In this paper, we propose the application of polycrystalline lanthanum- and cobalt-substituted strontium hexaferrites in the realization of self-biased circulators. These materials present a high anisotropy field, dependent on the substitution rate, which makes it possible to reach operating frequencies in the millimeter-wave range. A first demonstrator was successfully designed and realized using a 20% rate of substitution $(\hbox {Sr}_{0.8}\hbox {La}_{0.2}\hbox {Fe}_{11.8}\hbox {Co}_{0.2}\hbox {O}_{19})$ . This circulator showed insertion losses of 1.79 dB and an isolation level of 28.1 dB at 41.4 GHz without magnets. Performances can be significantly improved by applying a low magnetic field $(\hbox {H}_{\rm app}=2100 \hbox {Oe})$ . According to the literature, increasing the substitution rate makes it possible to increase the anisotropy field, and thus, the internal field. Consequently, a 30% substituted strontium hexaferrite was tested. It appears that the anisotropy field was not higher in this case. However, magnetic losses are much lower and enabled us to halve insertion losses of the self-biased circulator (0.87 dB at 41 GHz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.