Abstract

Federated learning (FL) is a distributed deep learning method that enables multiple participants, such as mobile and IoT devices, to contribute a neural network while their private training data remains in local devices. This distributed approach is promising in the mobile systems where have a large corpus of decentralized data and require high privacy. However, unlike the common datasets, the data distribution of the mobile systems is imbalanced which will increase the bias of model. In this article, we demonstrate that the imbalanced distributed training data will cause an accuracy degradation of FL applications. To counter this problem, we build a self-balancing FL framework named Astraea, which alleviates the imbalances by 1) Z-score-based data augmentation, and 2) Mediator-based multi-client rescheduling. The proposed framework relieves global imbalance by adaptive data augmentation and downsampling, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg, the vanilla FL algorithm, Astraea shows +4.39 and +6.51 percent improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea is reduced by 75 percent compared to FedAvg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.