Abstract
The strong metal-support interactions between metal and its support have been considered as an effective way to improve the electrocatalytic activity in heterogeneous catalysis, which can modulate metal d-band's energy level and, consequently, affect the adsorption/desorption of the intermediates on the metal nanoparticle's surface. In this paper, we use a self-assembly strategy for construction nano-sized Ru nanoparticles (NPs) anchored on B, N co-doping carbon nanorod carrier (Ru/BCN) as HER catalyst by using unique boron cluster-organic framework as precursor and self-sacrificing templates. This supramolecular framework forming with cucurbit [6]uril as the host and closo-[B12H12]2- as the guest can feature unique hexagonal nanorod morphology to confine the Ru NPs into framework through weak reductivity of closo-[B12H12]2-. After pyrolysis, the strong metal-support interactions between B, N co-doping carbon support (BCN) and Ru NPs have been found due to the synergistic coupling effect of co-dopants B and N, which can increase electron transfer between the metal nanoparticle and support. The overpotentials of 33 mV and 40 mV are required for as-prepared catalyst Ru/BCN to achieve a current density of 10 mA cm−2 in alkaline and acidic conditions, respectively, which are approximately one third of those of Ru/CN. These findings demonstrate that our synthetic way offers a potential route for fabricating co-doping carbon with B and N atoms to support Ru NPs with enhanced HER performance in pH-independent conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.