Abstract

The extracellular domain of Influenza M2 protein (M2e) was considered as a promising target for universal influenza vaccine development. Several M2e-based influenza vaccines have been developed and many of them used a mutant M2e peptide, in which the two conserved cysteine residues were substituted by serine residues. In this paper, we compared the antigenicity and immunogenicity of wild type and cysteine-mutant M2e peptides. We found that the cysteine substitution slightly affected the antigenicity of M2e epitope, but greatly reduced the immunogenicity of M2e peptide. The cysteine substitution also disabled the M2e peptide from inducing protection against influenza virus challenge in mice. Further analysis revealed that the immunogenicity of M2e peptide was enhanced by the self-assembly of the peptide through inter-peptide disulfide bonds. These results provide new information to improve the design of M2e-based vaccines against potential influenza pandemics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call