Abstract

Well-defined polyacrylamide-polystyrene copolymers were grafted from the fibrillar clay, attapulgite, by a four-step self-assembly process: (i) the gamma-aminopropyltriethoxyl silane was self-assembled onto the surfaces of the attapulgite; (ii) the surface amino groups were amidated with bromoacetylbromide; (iii) the bromo-acetamide modified attapulgite was used as macro-initiator for the surface-initiated atom transfer radical polymerization of styrene with the catalyst of the complex of 1,10-phenanthroline and Cu(I)Br; (iv) the polystyrene grafted attapulgite was then used as macroinitiator for the polymerization of acrylamide. The two steps of the surface-initiated atom transfer radical polymerizations were all conducted under ultrasonic irradiation at room temperature. The product, polyacrylamide-polystyrene copolymers grafted attapulgite, had been characterized with elemental analysis, Fourier transform infrared spectroscopy, Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.