Abstract

Carbon nanospheres (CNSs) are synthesized by pyrolysis of benzene at 1000 °C. Various UV-light photocatalysts of ZnO/CNSs and Ag-ZnO/CNSs (AZCN) composites are synthesized on the surface of CNSs using a facile chemical precipitation method. Morphological and optical properties of the as-synthesized photocatalysts are characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, UV-Vis spectroscopy, photoluminescence and Raman spectroscopy. Photocatalytic degradation efficiency of methylene blue dye is investigated to examine the photocatalytic activity of synthesized photocatalysts. It is found that as-synthesized ZnO/CNSs composite can degrade higher methylene blue dye (∼85.6%) after 25 min of UV irradiation in comparison with that of CNSs. A prominent improvement in the photodegradation is attained by depositing metal (Ag) particles on the surface of ZnO/CNSs composite. AZCN composite displays the enhanced photocatalytic degradation performance (∼95% after 15 min of UV light) in high concentration of methylene blue dye. Furthermore, stability performance is studied by recycling the AZCN composite photocatalyst. It is found that the photocatalytic activity of AZCN composite is only slightly decreased even after five cycles. Present work demonstrates that AZCN composite show a great potential in the treatment of organic pollutants for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.