Abstract
In the seeking of molecular expression of fractal geometry, chemists have endeavored in the construction of molecules and supramolecules during the past few years, while only a few examples were reported, especially for the discrete architectures. We herein designed and constructed five generations of supramolecular fractals (G1-G5) based on the coordination-driven self-assembly of terpyridine ligands. All the ligands were synthesized from triphenylamine motif, which played a central role in geometry control. Different approaches based on direct Sonogashira coupling and/or ⟨tpy-Ru(II)-tpy⟩ connectivity were employed to prepare complex Ru(II)-organic building blocks. Fractals G1-G5 were obtained in high yields by precise coordination of organic or Ru(II)-organic building blocks with Zn(II) ions. Characterization of those architectures were accomplished by 1D and 2D NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), traveling-wave ion mobility mass spectrometry (TWIM-MS), and transmission electron microscopy (TEM). Furthermore, the two largest fractals also hierarchically self-assemble into ordered supramolecular nanostructures either at solid/liquid interface or in solution on the basis of their well-defined scaffolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.