Abstract

The surprising recent discoveries of quasicrystals and their approximants in soft-matter systems poses the intriguing possibility that these structures can be realized in a broad range of nanoscale and microscale assemblies. It has been theorized that soft-matter quasicrystals and approximants are largely entropically stabilized, but the thermodynamic mechanism underlying their formation remains elusive. Here, we use computer simulation and free-energy calculations to demonstrate a simple design heuristic for assembling quasicrystals and approximants in soft-matter systems. Our study builds on previous simulation studies of the self-assembly of dodecagonal quasicrystals and approximants in minimal systems of spherical particles with complex, highly specific interaction potentials. We demonstrate an alternative entropy-based approach for assembling dodecagonal quasicrystals and approximants based solely on particle functionalization and shape, thereby recasting the interaction-potential-based assembly strategy in terms of simpler-to-achieve bonded and excluded-volume interactions. Here, spherical building blocks are functionalized with mobile surface entities to encourage the formation of structures with low surface contact area, including non-close-packed and polytetrahedral structures. The building blocks also possess shape polydispersity, where a subset of the building blocks deviate from the ideal spherical shape, discouraging the formation of close-packed crystals. We show that three different model systems with both of these features-mobile surface entities and shape polydispersity-consistently assemble quasicrystals and/or approximants. We argue that this design strategy can be widely exploited to assemble quasicrystals and approximants on the nanoscale and microscale. In addition, our results further elucidate the formation of soft-matter quasicrystals in experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.