Abstract

The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod−coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.