Abstract

The self-assembly phenomenon plays a significant role in atomic, molecular, and biological self-assemblies. This phenomenon has also been found in colloidal nanocrystals (NCs). Self-assembly of colloidal NCs into superstructures is a flexible and promising approach for manipulating nanometre-sized particles and exploiting physical and chemical properties that are distinct from both individual nanoparticles and bulk assemblies. The development of superlattices (SLs) of colloidal perovskite NCs through self-assembly has recently attracted remarkable attention; it is quickly developing as a new frontier in nanotechnology. This review presents the different driving forces, crucial factors for self-assembly of perovskite NCs, recent developments in the synthesis, and properties of self-assembled colloidal perovskite NCs. We also discuss the formation of various SLs from perovskite NCs with different morphologies. Finally, we shed light on multiple challenges in developing numerous perovskite SLs for optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call