Abstract

In order to explore the effects of the structures of organic molecules on their performance and develop high-efficiency self-assembly monolayers (SAMs), two heterocycle-based indole compounds, namely FYBI and TYBI, have been synthesized by a simple route. Herein, we show that FYBI and TYBI can effectively self-assemble on a copper surface and form strong anti-corrosive monolayers to protect copper in acid medium. The compositions, morphologies, and thicknesses of the SAMs have been investigated by XPS, FTIR, SEM and ellipsometry analyses. The optimal self-assembly conditions and inhibition performance of the SAMs with O- or S-heterocycles have been studied by electrochemical tests. According to the results, TYBI displays more powerful inhibition performance than FYBI. Furthermore, the high-resolution XPS and quantum calculation results reveal that the S-heterocycle indole (TYBI) can readily donate electrons to the empty d orbital of Cu and form more robust, hydrophobic, and anti-corrosive SAMs than the O-heterocycle indole (FYBI). The inhibited corrosion is achieved by inhibiting the generation of Cu2+. This systematic study on the performance of various heterocycle-based organic compounds gives a fresh perspective for forming SAMs with certain characteristics, such as anti-corrosion ability or super-hydrophobicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.