Abstract
Self-assemblies of mixtures of a G7 dendrimer and dimyristoylphosphatidylcholine (DMPC) lipids were simulated using the coarse-grained force fields. A single G7 dendrimer, which consists of either a hydrophilic or a hydrophobic interior, was simulated with the randomly distributed zwitterionic DMPC or anionic lipids. For the dendrimer with hydrophilic interior, its mixture with anionic lipids self-assembles to the dendrimer-encasing liposome, but the one with zwitterionic lipids does not. The liposome diameter agrees with experiment, which is smaller than the typical liposome without dendrimer. This indicates that the strong electrostatic interactions between dendrimer terminals and lipid phosphates induce high curvature of the bilayer, leading to such a small liposome. For the dendrimer with hydrophobic interior, lipids penetrate the dendrimer interior because of the hydrophobic interactions between the dendrimer interior and lipid tails, leading to the dendrimer–lipid micelle with increased dendrimer size. These simulation findings agree qualitatively with the experimentally proposed liposome and micelle models, and indicate that these proposed conformations of the dendrimer–lipid complexes are significantly modulated by dendrimer hydrophobicity and lipid charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.