Abstract
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclobutanedicarboxylic acid (H2-cbdc) generates 1D and 2D hydrogen-bonded infinite chains [Ni(L)(H-cbdc−)2] (1) and [Cu(L)(H-cbdc−)2] (2). (H-cbdc− = cyclobutane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structure of 1 shows a distorted octahedral coordination geometry around the nickel(II) ion, with four secondary amines and two oxygen atoms of the H-cbdc− ligand at the trans position. In 2, the coordination environment around the central copper(II) ion shows a Jahn–Teller distorted octahedron with four Cu–N bonds and two long Cu–O distances. The cyclic voltammogram of the complexes undergoes two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cbdc− ligand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.