Abstract

While helix has elegant biomimetic structures and functionalities, it still remains a big question how the nanoscale helicity evolved from the molecular chiral building blocks across length scales. Herein, macrocyclic triangles composed of achiral edges and chiral vertices were rationally designed, in which the planar chirality emerged due to the restriction of edge rotation by intermolecular stackings and led to a unique chiral self-assembly. In contrast to the solution systems where the chiroptical property is exclusively dominated by the point chiral vertices, the emerged planar chirality was found to control the chiral self-assembly, resulting the nanotwist with the handedness determined by the planar chirality. Our work unveiled the self-assembly behaviors of macrocyclic conformers for the first time and provided a deep understanding on the macrocyclic chirality evolution including the excited-state chirality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.