Abstract

Nanostructures formed upon self-assembly of amphiphilic block copolymers with linear and dendronized blocks are promising as nanocarriers for targeted drug and gene delivery. We propose a theoretical framework to predict how dimensions and morphologies of such nanostructures as well as the number of potentially functionalized terminal groups exposed to surrounding media can be controlled by adjusting molecular architecture parameters of dendronized blocks (i.e., number of generations and branching functionality). We demonstrate that dendronization of the soluble block stabilizes spherical micelles with a dendritic corona, whereas block copolymers with dendritic insoluble blocks give rise to cylindrical wormlike micelles or polymersomes even if homologous linear-linear block copolymers assemble into spherical micelles. Spherical micelles with a dendronized corona combine smaller hydrodynamic dimensions with a larger number of terminal groups as compared to micelles formed by homologous linear diblock copol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.