Abstract

Since the pioneering work of immobile DNA Holliday junction by Ned Seeman in the early 1980s, the past few decades have witnessed the development of DNA nanotechnology. In particular, DNA origami has pushed the field of DNA nanotechnology to a new level. It obeys the strict Watson-Crick base pairing principle to create intricate structures with nanoscale accuracy, which greatly enriches the complexity, dimension, and functionality of DNA nanostructures. Benefiting from its high programmability and addressability, DNA origami has emerged as versatile nanomachines for transportation, sensing, and computing. This review will briefly summarize the recent progress of DNA origami, two-dimensional pattern, and three-dimensional assembly based on DNA origami, followed by introduction of its application in nanofabrication, biosensing, drug delivery, and computational storage. The prospects and challenges of assembly and application of DNA origami are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.