Abstract

The construction of a new series of dendritic tris(crown ether) hexagons via coordination-driven self-assembly is described. Combining 120° crown ether-containing diplatinum(II) acceptors with 120° dendritic dipyridyl donors in a 1:1 ratio allows for the formation of a new family of dendritic triple crown ether derivatives with a hexagonal cavity in quantitative yields. The number and the position of these pendant groups can be precisely controlled on the hexagonal metallacycle. The structures of all dendritic multiple crown ether hexgaons are confirmed by multinuclear NMR ((1)H and (31)P), ESI-MS and ESI-TOF-MS, and elemental analysis. The complexation of these dendritic trivalent receptors with dibenzylammonium cations was investigated by (1)H NMR titration experiments. The thermodynamic binding constants between the receptors and guests were established by using the nonlinear least-squares fit method based on (1)H NMR titration experiments. It was found that the association constants of each assembly decrease correspondingly upon the increase of the generation of the dendrons from [G0] to [G3], which might be caused by the steric effect of the dendrons on host-guest complexation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call