Abstract

Advanced nanofabrication is capable of producing structures in the vicinity of the size of large biomolecules or their aggregates. Some of these protein aggregates emerge as having deleterious medical effects, e.g., degenerative diseases, or essential for biological processes, e.g., actin, cytoskeleton formation. Therefore it became possible, and important, to think of ways of interacting nanostructured surfaces with biomolecular aggregates in a designed manner. Along this line of thinking, we report on a preliminary atomic force microscopy (AFM) investigation of the behavior of F-actin on unstructured surfaces (mica, silicon) and nanostructured surface (13 nm height nanostructured silicon surface).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.