Abstract

Advanced nanofabrication is capable of producing structures in the vicinity of the size of large biomolecules or their aggregates. Some of these protein aggregates emerge as having deleterious medical effects, e.g., degenerative diseases, or essential for biological processes, e.g., actin, cytoskeleton formation. Therefore it became possible, and important, to think of ways of interacting nanostructured surfaces with biomolecular aggregates in a designed manner. Along this line of thinking, we report on a preliminary atomic force microscopy (AFM) investigation of the behavior of F-actin on unstructured surfaces (mica, silicon) and nanostructured surface (13 nm height nanostructured silicon surface).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call