Abstract

Directed self-assembly of nano or microsized materials as building blocks is a very exciting research topic to construct large-scale but still uniform 2D or 3D architectures. Graphene shows great potential as an advanced building block for fabricating varied graphene-based functional films or architectures together with other metal, metal oxide and semiconductor nanomaterials. In our work, we demonstrated an approach to fabrication of flexible, transparent conductive thin films via layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxides (RGOs). The graphene thin films showed remarkable optical–electronic properties. Inspired by this, we further fabricated transparent conductive hybrid thin film via LbL assembly of oppositely charged RGO nanosheets and Pt nanoparticles. The graphene– Pt hybrid thin film showed transient optical property as well as appropriate conductive and wetting properties. Moreover, we demonstrated graphene wrapped- MnO2 (GW- MnO2 ) nanocomposites by self-assembly of honeycomb MnO2 nanospheres and graphene sheets via an electrostatic co-precipitation method. The hybrid materials had a good electrochemical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.