Abstract

AbstractIn this work, a joint experimental and computational study on the synthesis, self‐assembly, and ionic conduction characteristics of a new conjugated liquid crystal quaterthiophene/poly(ethylene oxide) (PEO4) consisting of terminal tetraethyleneglycol monomethyl ether groups on both ends of a quaterthiophene core is performed. In agreement with molecular dynamic simulations, temperature‐dependent grazing‐incidence wide angle X‐ray scattering and X‐ray diffraction indicate that the molecule spontaneously forms a smectic phase at ambient temperature as characterized both in bulk and thin film configurations. Significantly, this smectic phase is maintained upon blending with bis(trifluoro‐methanesulfonyl)imide as ion source at a concentration ratio up to r = [Li+]/[EO] = 0.05. Nanosegregation between oligothiophene and PEO moieties and π–π stacking of thiophene rings lead to the formation of efficient 2D pathways for ion transport, resulting in thin‐film in‐plane ionic conductivity as high as 5.2 × 10−4 S cm−1 at 70 °C and r = 0.05 as measured by electrochemical impedance spectroscopy. Upon heating the samples above a transition temperature around 95 °C, an isotropic phase forms associated with a pronounced drop in ionic conductivity. Upon cooling, partial and local reordering of the conducting smectic domains leads to an ionic conductivity decrease compared to the as‐cast state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call