Abstract

A drug carrier based on glycyrrhetinic acid-modified sulfated chitosan (GA-SCTS) was synthesized. The glycyrrhetinic acid (GA) acted as both a hydrophobic group and a liver-targeting ligand. The GA-SCTS micelles displayed rapid and significant ability to target the liver in vivo. The IC50 for doxorubicin (DOX)-loaded GA-SCTS micelles (DOX/SA-SCTS micelles) against HepG2 cells was 54.7 ng/mL, which was extremely lower than the amount of no-GA-modified DOX-loaded micelles. In addition, DOX/SA-SCTS micelles could target specifically the liver cancer cells. They had higher affinity for the liver cancer cells (HepG2 cells) than for the normal liver cells (Chang liver cells). There was nearly 2.18-fold improvement in uptake of the DOX/SA-SCTS micelles by HepG2 cells than that by Chang liver cells. These results indicate that GA-SCTS is not only an excellent carrier for drugs, but also a potential vehicle for liver-cancer targeting. From the Clinical EditorIn this basic science study, sulfated chitosan nanoparticles were functionalized with glycyrrhetinic acid and studied in cell cultures, demonstrating efficient self-assembly and targeting of liver pathology. In vivo demonstration for the same is also provided, paving the way to future studies establishing long-term effects, toxicity and potential clinical applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.