Abstract

Ultratrace quantitative detection based on fluorescence is highly desirable for many important applications such as environmental monitoring or disease diagnosis, which however has remained a great challenge because of limited and irregular fluorescence responses to analytes at ultralow concentrations. Herein the problem is circumvented via local enrichment and detection of analytes within a microsensor, that is, photonic porous microspheres grafted with aggregation-induced emission gens (AIEgens). The obtained microspheres exhibit dual structural and molecular functions, namely, bright structural colors and strong fluorescence. Large fluorescence quenching induced by nitrophenol compounds in an aqueous environment is observed at ultralow concentrations (10-12-10-8 mol/L), enabling quantitative detection at a ppb level (ng/L). This is achieved within a porous structure with good connectivity between the nanopores to improve analyte diffusion, an internal layer of poly(ethylene oxide) (PEO) for analyte enrichment via hydrogen bonding, and homogeneous distribution of AIEgens within the PEO layer for enhanced fluorescence quenching. The fluorescent porous microspheres can be readily obtained in a single step templated by well-ordered water-in-oil-in-water double emulsion droplets with AIE amphiphilic bottlebrush block copolymers as the effective stabilizer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.