Abstract

1: Introduction. 2: Synthetic Self-Assembled Materials: Principles and Practice. 2.1. Microscopic and Macroscopic Interactions. 2.2. Surfactants and Amphiphilic Molecules. 2.3. Transition from Dispersed State to Condensed State: The Beginning Point of Self-Assembly. 2.4. Packing Geometry: Attaining the Desired Self-Assembled Structures. 2.5. Self-Assembled Block Copolymer Nanostructures. 2.6. Co-Assembly of Liquid Crystalline Structures and Inorganic Materials. 2.7. Intelligent Nanoscale Materials. 2.8. References. 3: Examples of Nanoscale Materials in Nature. 3.1. Multiscale Ordering and Function in Biological Nanoscale Materials. 3.2. Hierarchical Ordering in Natural Nanoscale Materials. 3.3. Multifunction of the Organic Phase in Biological Nanoscale Materials. 3.4. References. 4: Nanocrystal Self-assembly. 4.1. Nanocrystals. 4.2. Shapes of Polyhedral Nanocrystals. 4.3. Self-assembly of Nanocrystals. 4.4. Solution-phase Self-assembly of Particles. 4.5. Technical Aspects of Self-assembling. 4.6. Properties of Nanocrystal Self-assembly. 4.7. Template Assisted Self-assembly. 4.8. Summary. 4.9. References. 5: Structural Characterization of Nanoarchitectures. 5.1. X-ray Diffraction. 5.2. Scanning Probe Microscopy. 5.3. Scanning Electron Microscopy. 5.4. Transmission Electron Microscopy. 5.5. Summary. 5.6. References. 6: Fabrication of Nanoarchitectures Using Lithographic Techniques. 6.1. Fabrication Techniques and Nanolithography. 6.2. X-ray, Electron and Ion Beam Lithography. 6.3. Nanoparticle Lithography. 6.4. Scanning Probe Lithography. 6.5. Concluding Remarks. 6.6. References. 7: Chemical and Photochemical Reactivities of Nano-architectures. 7.1. Redox Potentials of Nanomaterials. 7.2. Photochemical and Chemical Reactions. 7.3. Photoelectrochemical Reactions. 7.4. Photocatalysis and Environmental Applications. 7.5. Molecular Recognition and Surface Specific Interaction. 7.6. References. 8: Optical, Electronic, and Dynamic Properties of Semiconductor Nnaomaterials. 8.1. Energy Levels and Density of States in Reduced Dimension Systems. 8.2. Electronic Structure and Electronic Properties. 8.3. Optical Properties of Semiconductor Nanomaterials. 8.4. Applications of Optical Properties. 8.5. Charge Carrier Dynamics in Semiconductor Nanoparticles. 8.6. References. 9: Optical, Electronic, and Dynamic Properties of Metal Nanomaterials. 9.1. Static Absorption Properties of Metal Nanoparticles and Assemblies. 9.2. Emission of Metal Particles. 9.3. Surface Enhanced Raman Scattering (SERS). 9.4. Spectral Line Widths and Electronic Dephasing. 9.5. Electronic Relaxation Dynamics. 9.6. Electron-Phonon Interaction. 9.7. Single Particle Spectroscopy of Metal Nanoparticles. 9.8. Applications of Metal Nanoparticles. 9.9. References. 10: Electrochemical Properties of Nanoparticle Assemblies. 10.1. Introduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call