Abstract

The preparation, structure, properties and applications of self-assembled monolayers (SAMs) of rigid 4-mercaptobiphenyls are briefly reviewed. The rigid character of the biphenyl moiety results in a molecular dipole moment that affects both the adsorption kinetics on gold surfaces, as well as the equilibrium structure of mixed SAMs. Due to repulsive intermolecular interaction, the Langmuir isotherm model does not fit the adsorption kinetics of these biphenyl thiols, and a new Ising model was developed to fit the kinetics data. The equilibrium structures of SAMs and mixed SAMs depend on the polarity of the solution from which they were assembled. Infrared spectroscopy suggests that biphenyl moieties in SAMs on gold have small tilt angles with respect to the surfaces normal. Wetting studies shows that surfaces of these SAMs are stable for months, thus providing stable model surfaces that can be engineered at the molecular level. Such molecular engineering is important for nucleation and growth studies. The morphology of glycine crystals grown on SAM surfaces depends on the structure of the nucleating glycine layer, which, in turn, depends on the H-bonding of these molecules with the SAM surface. Finally, the adhesion of PDMS cross-linked networks to SAM surfaces depends on the concentration of interfacial H-bonding. This non-linear relationship suggests that the polymeric nature of the elastomer results in a collective H-bonding effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.