Abstract

The morphology of the copper iodide (CuI) film as an inorganic p-type material has an important influence on enhancing the performance of polymer solar cells (PSCs). A self-assembled monolayer of 3-aminopropanoic acid (C3-SAM) was used on the surface of indium tin oxide (ITO) before depositing the CuI films. Consequently, a well-distributed and smooth CuI film was formed with pinhole free and complete surface coverage. The root mean square of the corresponding CuI film was reduced from 3.63 nm for ITO/CuI to 0.77 nm. As a result, the average power conversion efficiency (PCE) of PSCs with the device structure of ITO/C3-SAM/CuI/P3HT:PC61BM/ZnO/Al increased significantly from 2.55% (best 2.66%) to 3.04% (best 3.20%) after C3-SAM treatment. This work provides an effective strategy to control the morphology of CuI films through interfacial modification and promotes its application in efficient PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.