Abstract

The biodegradable cholesteryl-(l-lactic acid) n (CPLA) was synthesized via ring opening polymerization of l-lactide in the presence of cholesterol as an initiator and the catalytic amount of Sn(Oct)2. The resulting monohydroxyl-terminated CPLA was subsequently converted to a bromine-ended macroinitiator (CPLA-Br) by esterification with 2-bromoisobutyryl bromide. Amphiphilic block-brush copolymers with different lengths of hydrophilic block (CPLA-b-P(PEGMA)4 and CPLA-b-P(PEGMA)12) were synthesized in a subsequent atom transfer radical polymerization of the poly(ethylene glycol)monomethyl ether methacrylate (PEGMA). The prepared polymers were characterized by FTIR, 1H NMR and GPC. The self-assembly of the copolymers into the micellar aggregates in aqueous media was followed with dynamic light scattering, transmission electron microscopy and fluorescence analysis. The CMC values of the CPLA-b-P(PEGMA)4 and CPLA-b-P(PEGMA)12 samples were estimated approximately 56 × 10−4 and 72 × 10−4 g/L in an aqueous solution by fluorescence probe technique, respectively. The hydrophobic/hydrophilic chain ratio of the amphiphilic copolymers could have demonstrated a correlation with micelle formation ability and inter-micellar aggregation in an aqueous solution. Using the naproxen as a hydrophobic model drug, the drug-loading efficiency and drug release properties of the CPLA–PEG nanoparticles were investigated. In vitro release study of the naproxen-loaded micelles with about 54–60 % loading efficiency and 11–12 % loading capacity was performed using dialysis method in phosphate-buffered solution at 37 °C. Accordingly, these polymeric micelles may be provided as an effective drug carrier for drug controlled release by modulating the copolymer composition and molecular weight of blocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call