Abstract

The ability of microcontact printing to build highly ordered alkanethiol self-assembled monolayers (SAMs) on Pt substrates within a short time is studied by sum frequency generation (SFG) spectroscopy and contact angle measurements. The deposition of ordered hexadecanethiol and dodecanethiol monolayers onto platinum substrates is achieved in less than 1 s. The film order and the alkane chain orientation are deduced from the SFG fingerprint acquired under different sets of laser polarization. Comparisons between the SAMs prepared by printing or by immersion demonstrate that both methods lead to the same high quality organization. Patterning effects within printed films are also investigated with respect to the layer conformation. Finally, wetting properties of printed layers are correlated with the printing duration, corroborating the spectroscopic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.