Abstract

Pollutant detection is of great importance for quality control of drinking water and environmental protection. The common methods of pollutant detection suffer from time-consuming procedures, bulky and expensive instruments, and complicated sample pretreatment. Herein, a type of conceptually new self-amplified fluorescent nanoparticle (SAFN) is constructed based on aggregation-induced emission (AIE) luminogens for rapid and visual detection of xylene in aqueous media. AIE luminogens are self-assembled into SAFNs in aqueous media, which emit efficiently due to the aggregation of luminogen molecules. The SAFNs of AIE luminogens stick xylene molecules from aqueous media through multiple interactions including hydrophobic and π-π interactions. Upon capturing xylene, SAFNs swell, which quench the fluorescence of the whole SAFNs, showing the self-amplification effect. Such a self-amplification effect is entirely different from that of conjugated polymers in the literature. Importantly, fluorescence quenching of SAFNs by xylene can be readily observed by the naked eye, which enables visual xylene sensing. The SAFNs enable rapid and visual detection of xylene in aqueous media with a low detection limit (5 μg/L) in the order of seconds. Given high sensitivity, rapid response, simple and easy operation, and low cost, SAFNs of AIE luminogens present a promising platform for visual detection of organic pollutants in aqueous media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.