Abstract
The MapReduce framework and its open source implementation Hadoop have become the defacto platform for scalable analysis on large data sets in recent years. One of the primary concerns in Hadoop is how to minimize the completion length (i.e., makespan) of a set of MapReduce jobs. The current Hadoop only allows static slot configuration, i.e., fixed numbers of map slots and reduce slots throughout the lifetime of a cluster. However, we found that such a static configuration may lead to low system resource utilizations as well as long completion length. Motivated by this, we propose simple yet effective schemes which use slot ratio between map and reduce tasks as a tunable knob for reducing the makespan of a given set. By leveraging the workload information of recently completed jobs, our schemes dynamically allocates resources (or slots) to map and reduce tasks. We implemented the presented schemes in Hadoop V0.20.2 and evaluated them with representative MapReduce benchmarks at Amazon EC2. The experimental results demonstrate the effectiveness and robustness of our schemes under both simple workloads and more complex mixed workloads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.