Abstract

The coal reservoir is a kind of geologic body with considerable elasticity, and its response to stress is more sensitive than the routine ones. In the pool-forming process of the coalbed methane, (CBM) the action of many external geodynamic factors in the coal reservoir is represented by the ability of CBM’s diffusion and migration in the coal reservoir. Therefore, the occurrence of the natural fissures in the coal reservoir becomes a key that determines whether the CBM pool can be formed or not. Based on the principle, the authors have designed a comprehensive method of physical modeling to study the elasticity of the coal matrix block with different coal ranks in the light of the solid to fluid coupling, have established the model of the volume deformation (selfadjusted elastic effect) of the coal reservoir under the condition of the effective stress-adsorption/desorption, and have obtained a correct understanding of the law of the elastic deformation. Afterwards, a new viewpoint, named as the self-closing elastic effect for forming the CBM pool in the high rank reservoir, is put forward, providing an initial point and a scientific basis for a further investigation into its dynamic factors, possible mechanism and role in the CBM energy-balancing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call