Abstract

We describe the operation of a self-starting Nd:YAG laser oscillator incorporating a design in which laser oscillation occurs by means of diffraction from spontaneously generated three-dimensional gain gratings produced by spatial hole burning in the Nd:YAG amplifier. The transient onset and spectral selectivity of the gain gratings produce an output with energy of 600 mJ in a 10-ns single-longitudinal-mode pulse at 10 Hz. The self-adaptation of the gain gratings produces compensation of intracavity phase distortion. A transient numerical modeling of the nonlinear resonator gives good agreement with the experimental system and also provides insight into the temporal dynamics of the gain grating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.