Abstract
The problems studied in this paper are a class of monotone constrained variational inequalities VI (S, f) in which S is a convex set with some linear constraints. By introducing Lagrangian multipliers to the linear constraints, such problems can be solved by some projection type prediction-correction methods. We focus on the mapping f that does not have an explicit form. Therefore, only its function values can be employed in the numerical methods. The number of iterations is significantly dependent on a parameter that balances the primal and dual variables. To overcome potential difficulties, we present a self-adaptive prediction-correction method that adjusts the scalar parameter automatically. Convergence of the proposed method is proved under mild conditions. Preliminary numerical experiments including some traffic equilibrium problems indicate the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.